
Generate SQL expression for window functions
Source:R/translate-sql-window.R, R/backend-teradata.R
win_over.Rdwin_over() makes it easy to generate the window function specification.
win_absent(), win_rank(), win_aggregate(), and win_cumulative()
provide helpers for constructing common types of window functions.
win_current_group() and win_current_order() allow you to access
the grouping and order context set up by dplyr::group_by() and dplyr::arrange().
Usage
win_over(
expr,
partition = NULL,
order = NULL,
frame = NULL,
con = sql_current_con()
)
win_rank(f, empty_order = FALSE)
win_aggregate(f)
win_aggregate_2(f)
win_cumulative(f)
win_absent(f)
win_current_group()
win_current_order()
win_current_frame()
win_rank_tdata(f)Examples
con <- simulate_dbi()
win_over(sql("avg(x)"), con = con)
#> <SQL> avg(x) OVER ()
win_over(sql("avg(x)"), "y", con = con)
#> <SQL> avg(x) OVER (PARTITION BY `y`)
win_over(sql("avg(x)"), order = "y", con = con)
#> <SQL> avg(x) OVER (ORDER BY `y`)
win_over(sql("avg(x)"), order = c("x", "y"), con = con)
#> <SQL> avg(x) OVER (ORDER BY `x`, `y`)
win_over(sql("avg(x)"), frame = c(-Inf, 0), order = "y", con = con)
#> <SQL> avg(x) OVER (ORDER BY `y` ROWS UNBOUNDED PRECEDING)